일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- BiFPN
- Object Detection metric
- mean Average Precision
- Darknet
- YOLO
- Non maximum suppression
- detr
- multi task loss
- RoI pooling
- Hungarian algorithm
- R-CNN
- Region proposal Network
- Map
- Multi-task loss
- Average Precision
- IOU
- Bounding box regressor
- hard negative mining
- AP
- Linear SVM
- RPN
- fine tune AlexNet
- Anchor box
- object queries
- herbwood
- Object Detection
- Fast R-CNN
- pytorch
- Faster R-CNN
- Detection Transformer
- Today
- Total
목록Object Detection (2)
약초의 숲으로 놀러오세요
이번에는 CVPR 2020년에 발표된 EfficientDet 논문(EfficientDet: Scalable and Efficient Object Detection)을 읽고 리뷰해보도록 하겠습니다. 당시 object detection 모델은 모두 속도와 정확도 사이의 트레이드오프(trade-off)가 존재했습니다. EfficientDet은 효과적으로 모델의 구조를 변형함으로써 속도와 정확도라는 두 마리 토끼를 모두 잡았으며, resource에 맞게 모델의 scale을 자유롭게 조정할 수 있는 높은 scalability를 보였습니다. Research gap 정확도가 높은 object detection 모델은 model size가 크며 computational cost가 높아 real-world applica..
최근 컴퓨터 비전 분야에서는 이미지를 분류하는 것을 넘어 이미지에 존재하는 사물을 검출하는 Object detection에 대한 연구가 활발히 진행되고 있습니다. Object detection은 자율 주행차, 얼굴 및 보행자 검출, 영상 복구, OCR, Vision Inspection 등 다양한 분야에서 활용되고 있습니다. 저도 Object detection에 관심을 가져 관련 논문을 읽어보고자 했으나, 이미지 분류와는 다른 문제 정의, 모델 구조, 그리고 평가 방식의 차이를 이해하지 못해 좌절했습니다😂 그래서 관련 논문을 본격적으로 살펴보기에 앞서 Object detection의 정의와 평가 방법에 대해 공부한 내용을 정리해보았습니다. Object Detection의 정의 - Image Classifi..